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Abstract
It is shown that the polygonal invariant curve of the ultradiscrete QRT (uQRT)
map, which is a two-dimensional piecewise linear integrable map, is the
complement of the tentacles of a tropical elliptic curve on which the curve has
a group structure in analogy to classical elliptic curves. Through the addition
formula of a tropical elliptic curve, a tropical geometric description of the
uQRT map is then presented. This is a natural tropicalization of the geometry
of the QRT map found by Tsuda. Moreover, the uQRT map is linearized on
the tropical Jacobian of the corresponding tropical elliptic curve in terms of
the Abel–Jacobi map. Finally, a formula concerning the period of a point in
the uQRT map is given, and an exact solution to its initial-value problem is
constructed by using the ultradiscrete elliptic theta function.

PACS numbers: 02.30.Ik, 05.45.Yv, 87.17.−d

1. Introduction

The QRT maps introduced by Quispel, Roberts and Thompson in 1989 [1] form an 18-
parameter family of two-dimensional paradigmatic integrable maps. They include reductions
of various higher-dimensional soliton systems such as the KdV, the modified KdV and the
nonlinear Schrödinger equations, and each member possesses a one-parameter family of
invariant curves which fills the plane and is parametrized by elliptic functions. Though the
QRT maps were introduced by using purely algebraic relations of vectors, Tsuda revealed its
geometry in terms of the addition formula of a rational elliptic surface [2]. His geometric
formulation made it clear that the QRT map is an autonomous limit of Sakai’s elliptic Painlevé
equation [3].

In the 1990s, the study of soliton systems has received a substantial boost with the
introduction of the ultradiscretization procedure which allows a systematic construction of
cellular automata from soliton systems [4–6]. The method was immediately applied to the
QRT maps, and an eight-parameter family of piecewise linear maps called the ultradiscrete
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QRT (uQRT) maps was derived [7, 8]. Each member possesses a family of polygonal
invariant curves which fills the plane and is parametrized by the ultradiscrete elliptic functions
[9]. Though some attempts to give a geometric description of the uQRT maps have been made
[10, 11], its geometry has not been clarified yet.

Recently, Inoue and Takenawa proposed a method [12] to study integrable cellular
automata via the tropical spectral curve and its Jacobian [13]. They applied the method
to the periodic box-ball system [14] and clarified the algebro-geometrical meaning of the
real torus introduced for its initial-value problem [15–17]. This fact suggests that a tropical
geometric approach is effective to examine ultradiscrete integrable systems.

In this paper, we give a geometric description of the uQRT maps via tropical elliptic
curves. We at first show that the invariant curve of the uQRT map is the complement of the
tentacles of a tropical elliptic curve on which the curve has a group structure [18]. We then
present a geometric description of the uQRT map in terms of the addition formula of a tropical
elliptic curve. Through this description, we linearize the uQRT map on the tropical Jacobian
of the corresponding tropical elliptic curve by using the Abel–Jacobi map. Finally, we give
a formula concerning the fundamental period of a point in the uQRT map, and construct an
exact solution to its initial-value problem by using the ultradiscrete elliptic theta function.

2. The uQRT maps and tropical elliptic curves

2.1. The uQRT maps

We consider an eight-parameter family of piecewise linear maps φ : (x, y) �→ (x̄, ȳ) called
the uQRT maps [7, 8]:

x̄ = F1(y) − F3(y) − x, ȳ = G1(x̄) − G3(x̄) − y, (1)

where we put

F1(y) := max[α20 + 2y, α21 + y, α22], F3(y) := max[α00 + 2y, α01 + y, α02],

G1(x̄) := max[α02 + 2x̄, α12 + x̄, α22], G3(x̄) := max[α00 + 2x̄, α10 + x̄, α20].

Each member of this family possesses a one-parameter family of invariant curves filling the
plane

k + H(B0; x, y) = H(A0; x, y), (2)

where we put

H(A0; x, y) := max[F1(y), F2(y) + x, F3(y) + 2x]

H(B0; x, y) := x + y

and F2(y) := max[α10 + 2y, α12]. The family of invariant curves is denoted by Ik (k ∈ R).

Example 1. Let the parameters be as follows:
α00 = −5, α01 = 10, α02 = 0, α10 = 10,

α12 = 5, α20 = 0, α21 = 5, α22 = 0.

Then I14 is a pentagonal, I24 is a heptagonal and I30 is a octagonal invariant curve of φ (see
figure 1). In figure 1, a parameter αij (0 � i, j � 2) stands for a domain in which an edge of
Ik is represented by the linear equation k = αij + (1 − i)x + (1 − j)y.

If α00 > α01 + α10 − k holds then Ik passes through the domain in which Ik is represented
by k = α00 + x + y (see I30 in figure 1). Then Ik corresponds not to a tropical elliptic curve but
to a tropical curve of degree 4 (see section 2.2). In order to establish a connection between the
family of invariant curves filling the plane and a family of tropical elliptic curves, we assume
α00 → −∞ in the following.
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Figure 1. Polygonal invariant curves of the uQRT map.

2.2. Tropical elliptic curves

Let T = R∪{−∞} be the tropical semifield [19]. Consider the following tropical polynomial
f in (x, y) with support A = {(a1, a2) ∈ Z

2|0 � a1, a2 � 2, a1 + a2 � 3},
f = max

(a1,a2)∈A
[λ(a1,a2) + a1x + a2y], (3)

where each λ(a1,a2) ∈ T. The tropical curve given by f is the set of all points (x, y) ∈ R
2 at

which f is not smooth [19, 20]. The lower face of the convex hull of {(a1, a2, λ(a1,a2))|(a1, a2) ∈
A} projects bijectively onto that of A under deleting the last coordinate. This defines a regular
subdivision � of A.

We have the following duality theorem [19].

Theorem 1 (proposition 3.5 in [19]). The tropical curve C given by a tropical polynomial
is an embedded graph in R

2 which is dual to the regular subdivision � of the support of the
tropical polynomial. Corresponding edges of C and � are perpendicular.

The tropical curve C given by (3) has degree 3 [18] and genus one because � contains an
interior lattice point (1, 1) [18, 21]. Assume

2λ(1,1) > max[λ(2,0) + λ(0,2), λ(2,1) + λ(0,1), λ(1,2) + λ(1,0)].

Then C is smooth (i.e. every vertex is trivalent with multiplicity one) [21, 18], and hence it is
a tropical elliptic curve [18].

Since (1, 1) is an interior lattice point of �, C contains a unique cycle, which we will
denote by C̄. We call each connected component of C\C̄ a tentacle of C.

Example 2. Let the parameters be as follows:

λ(2,1) = 10, λ(2,0) = 0, λ(1,2) = 10, λ(1,0) = 5,

λ(1,1) = 20, λ(0,2) = 0, λ(0,1) = 5, λ(0,0) = 0.
(4)

Then C is a heptagon with seven half rays called tentacles. Figure 2 shows C and �. We see
that each edge of C is perpendicular to an edge of �.

3



J. Phys. A: Math. Theor. 41 (2008) 125205 A Nobe

x

y

x

y

Figure 2. A tropical elliptic curve and the regular subdivision.

2.3. The group law on a tropical elliptic curve

In [18], Vigeland showed that tropical elliptic curves have a group structure in analogy to
classical elliptic curves. In this section we recall some material from his (and related) work,
which will be crucial in the following.

We define stable intersection C ∩st D of two tropical curves C and D as follows:

C ∩st D = lim
ε→0

(Cε ∩ Dε) ,

where Cε and Dε are nearly translations of C and D such that they intersect transversally (i.e.
no vertex of Cε lies on Dε and vice versa) [19].

Fix O ∈ C̄. Let V1, V2, . . . , Vn be the vertices of C̄ in counterclockwise direction. If O
is a vertex then V1 = O, otherwise O lies between V1 and Vn. The edge connecting Vi and
Vi+1 is denoted by Ei for i = 1, 2, . . . , n − 1. En is the edge connecting Vn and V1. For
i = 1, 2, . . . , n, let εi = 1/|vi|, where vi is the primitive tangent vector along Ei and |vi|
denotes its Euclidian length. The total lattice length L of C̄ is defined as

L =
n∑

i=1

εi |Ei |.

Then the tropical Jacobian J (C̄) of C̄ is defined as follows [12, 13]:

J (C̄) = R/LZ.

Now we define a map η : C̄→J (C̄), which is linear on each edge Ei of C̄:

η(O) = 0,

η(V1) = εn|OV1|,
η(Vi+1) = η(Vi) + εi |Ei |, (i = 1, 2, . . . , n − 1).

(5)

Note that the map (5) is bijective and equivalent to the Abel–Jacobi map (2.3) for g = 1 in
[12]. We define the single lattice distance dC(P,Q) between points P and Q on C̄ by

dC(P,Q) = η(Q) − η(P ).

The following theorem is the main result of [18].

Theorem 2 (theorem 1.1 in [18]). Let C be a tropical elliptic curve and O a point on C̄.

(i) We have a bijection of sets C̄ ↔ Pic0(C)1, given by P ↔ P − O.

1 In [18], this group of degree 0 divisor classes on C [22] is called the Jacobian of C and denoted by Jac(C).
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Figure 3. The group law on a tropical elliptic curve.

(ii) The induced group law on C̄ satisfies the relation

dC(O, P + Q) = dC(O, P ) + dC(O,Q).

(iii) As a group, C̄ is isomorphic to S1.

We can describe the group law geometrically. Given two points P and Q on C̄, we cannot
always find a tropical line L ( i.e. a tropical curve of degree 1) which intersects C stably in
P and Q. If there exists such a line, we call (P,Q) a good pair. If (P,Q) is a good pair,
consider L through both P and Q, and let R be the third intersection point of L and C̄. Now
if (R,O) is a good pair, let L′ be the tropical line through both R and O. Then P + Q is the
third intersection point of L′ and C̄ (see figure 3).

If any of the pairs (P,Q) and (R,O) fails to be good, then move the two points involved
equally far in the lattice metric in opposite directions until they form a good pair, and use this
new pair as described above.

3. Tropical geometric description of the uQRT maps

3.1. Geometry of the uQRT maps

Now let C be a tropical elliptic curve given by (3). We first establish a correspondence between
Ik and C̄.

Lemma 1. The invariant curve Ik coincides with C̄ with the choice of the parameters

αij = λ(2−i,2−j), (0 � i, j � 2, (i, j) 	= (0, 0), (1, 1)),

k = λ(1,1).
(6)

Proof. Each edge of Ik is given by one of the following seven linear equations

k = αij + (1 − i)x + (1 − j)y,

for 0 � i, j � 2 and (i, j) 	= (0, 0), (1, 1). If we choose the parameters as in (6) we have

λ(1,1) = λ(2−i,2−j) + (1 − i)x + (1 − j)y,

for 0 � i, j � 2 and (i, j) 	= (0, 0), (1, 1). By setting l = 2 − i and m = 2 − j , this reduces
to

λ(1,1) + x + y = λ(l,m) + lx + my (7)

for 0 � l, m � 2 and l + m � 3. Each linear equation (7) gives a part of C, which is not a
tentacle but a line segment of C̄. Because the left-hand side of (7) is a term of f corresponding

5
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Figure 4. A tropical elliptic curve C in P
2,trop.

to the only interior lattice point (1, 1) of �, the part of C given by (7) is perpendicular to an
edge outgoing from (1, 1). Thus Ik coincides with C̄. �

In order to see the correspondence between a tropical and a classical elliptic curve,
we consider tropical elliptic curves in the tropical projective plane P

2,trop introduced by
Kajiwara [23]2. The tropical projective plane P

2,trop is a two-dimensional real space with three
boundaries corresponding to the lines at infinity X = 0, Y = 0 and Z = 0, where [X, Y,Z]
are the homogeneous coordinates of P

2, respectively [23].

Example 3. Figure 4 shows C in P
2,trop with the choice of the parameters (4). Tentacles

having the primitive tangent vectors (1, 0) and (0, 1) pass through T and O corresponding to
the points at infinity [1, 0, 0] and [0, 1, 0] in P

2, respectively [23].

Now we show that every C passes through both T and O. Let D1 and D2 be sets of vectors
as follows:

D1 :=
{
(r cos θ, r sin θ) ∈ R

2
∣∣∣−π

2
< θ <

π

4
, r ∈ R>0

}
,

D2 :=
{
(r cos θ, r sin θ) ∈ R

2
∣∣∣π

4
< θ < π, r ∈ R>0

}
.

A tentacle whose primitive tangent vector is in D1 passes through T and in D2 through O [23].
We have the following lemma.

Lemma 2. There exists exactly one tentacle of C whose primitive tangent vector is in Di for
i = 1, 2.

Proof. Note first that a tentacle of C is perpendicular to an edge of � not through a11 := (1, 1).
Also note that we can eliminate any vertex of � by setting λ(i,j) = −∞ for some (i, j) ∈ A.

In order C to be genus one, a11 must be the interior point of �. Therefore, the vertices
a20 := (2, 0) and a21 := (2, 1) of � must not vanish simultaneously. If both a20 and a21 exist,
there exists a tentacle perpendicular to the edge connecting them. The primitive tangent vector
of this tentacle is (1, 0) ∈ D1. It is easy to see that no other tentacle has the primitive tangent
vector in D1. Suppose a21 to be eliminated by setting λ(2,1) = −∞. Then a20 and a12 := (1, 2)

do not vanish simultaneously, and hence there exists a tentacle whose primitive tangent vector

2
P

2,trop is equivalent not to TP
2 := R

3/(1, 1, 1) in [19] but to TP
2 in [13].

6
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Table 1. The first column shows C around a tentacle whose primitive tangent vector is given in
the second column. The third column shows a parameter taking −∞ to eliminate a vertex of �.
The last column shows an edge of � perpendicular to the tentacle.

Tentacle Vector −∞ Edge in �

�
�

� (1, 0) ∈ D1 None

�

�

�
�

�
�

������
� (2, 1) ∈ D1 λ(2,1)

�

�

�
�
��

�
�
��

�
�
��

�
�

�
�

�
�

� (1, −1) ∈ D1 λ(2,0)
�

�

�
�

�
�

�
�

�
�

�
�

������

� (1, −2) ∈ D1 λ(2,0), λ(1,0)
�

�

�
�

����
����
����

�
�

� (0, 1) ∈ D2 None

� �

�
�

�
�

������� (1, 2) ∈ D2 λ(1,2)

�

�

����
����
����

�
�

�
�

�
�

� (−1, 1) ∈ D2 λ(0,2)
�

�

�
�

�
�
�

�
�

�

�
�

������
� (−2, 1) ∈ D2 λ(0,1), λ(0,2)

�

�

�
��

�
��

�
�

��

�
�

��

is (2, 1) ∈ D1. Similarly, if a20 vanishes then there exists a tentacle whose primitive tangent
vector is (1,−1) ∈ D1 or (1,−2) ∈ D1. Thus, for any choice of the parameters, there exists
exactly one tentacle whose primitive tangent vector is in D1. In a similar manner, the D2 case
is shown. We summarize this in table 1. �

Let T̃ and Õ be the vertices of C̄ connected with T and O by the tentacles whose primitive
tangent vectors are in D1 and D2, respectively. Then T̃ and Õ are linearly equivalent to T and
O, respectively (see figure 4) [18].

Now we show that the uQRT map is nothing but the addition of points on a tropical elliptic
curve. Let P = (x, y) be a point on Ik . By lemma 1, P can be identified with a point on C̄.
Note that C̄ has at most two line segments parallel to the x-axis, we denote them by E1 and
E2. Assume P is not on E1 and E2, then (P, T̃ ) is a good pair. Let us consider the line through
both P and T̃ , and denote it by L1. By the tropical Bézout theorem [19, 23], L1 intersects C̄

at three points. We denote the third intersection point of L1 and C̄ by Q = (x̄, y). Note that

7
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P and Q are on the x-ray of L1 (i.e. the half ray parallel to the x-axis), and hence Q is not on
E1 and E2.

The coordinate x̄ can be written in x and y as follows. Since Ik passes through both P and
Q, we have

H(A0; x, y) = k + H(B0; x, y), H(A0; x̄, y) = k + H(B0; x̄, y).

Eliminating k, we get

H(A0; x, y) + x̄ = H(A0; x̄, y) + x. (8)

Since P and Q are not on E1 and E2, we have

H(A0; x, y) = max[F1(y), F2(y) + x, F3(y) + 2x] 	= F2(y) + x,

H(A0; x̄, y) = max[F1(y), F2(y) + x̄, F3(y) + 2x̄] 	= F2(y) + x̄.

On the other hand, P and Q are on the x-ray of L1, hence we have

H(A0; x, y) = F1(y) ⇒ H(A0; x̄, y) = F3(y) + 2x̄,

H(A0; x, y) = F3(y) + 2x ⇒ H(A0; x̄, y) = F1(y).

Therefore, (8) can be solved

F1(y) + x̄ = F3(y) + 2x̄ + x or F3(y) + 2x + x̄ = F1(y) + x.

In both cases, we obtain

Q = (x̄, y) = (F1(y) − F3(y) − x, y) .

Next we consider the case when P is on E1 or E2. If we translate P to the point
P ′ = (x ′ := x − ζ, y) on the nearest vertex in the left direction, then (P ′, T̃ ) is a good
pair. As above, let us consider the line L′

1 through both P ′ and T̃ , and let the third intersection
point of L′

1 and C̄ be Q′ = (x̄ ′, y). Then we have

x̄ ′ = F1(y) − F3(y) − (x − ζ ).

Let T̃ ′ be the point which is the translation of T̃ by ζ in the lattice metric in opposite direction
from P to P ′ (see figure 5). Now we translate L′

1 by ζ in the left direction along the x-axis,
and denote the translated line by L1. Then L1 passes through P ′ because P ′ is on the x-ray
of L′

1. By the definition of T̃ ′, it is clear that L1 passes through T̃ ′. Moreover, L1 intersects
C̄ stably in P ′ and T̃ ′. Because L′

1 intersects C̄ stably in P ′ and T̃ , a translation of L′
1 also

intersects C̄ stably in P ′ and a translation of T̃ (see figure 5). Therefore (P ′, T̃ ′) is a good
pair. The third intersection point Q of L1 and C̄ is

Q = (x̄ ′ − ζ, y) = (F1(y) − F3(y) − x, y).

In a similar manner, let L2 be the tropical line through both Q and Õ, then the third
intersection point of L2 and C̄ is P̄ = (x̄, ȳ), where ȳ is given as

ȳ = G1(x
′) − G3(x

′) − y.

The correspondence P �→ P̄ is nothing but the uQRT map φ.
From the above discussion, it is clear that the correspondence P �→ P̄ can also be

described as the addition of points on C̄ (see figure 6)

P + T̃ = P̄ + Õ = P̄ .

Thus we obtain the following theorem.

8
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Figure 5. The case when P is on E1 or E2.

T̃

Õ

P Q

C̄

L1
T̃

Õ

P Q

P̄

C̄

L1

L2

φ

Figure 6. The uQRT map φ : P �→ P̄ .

Theorem 3. Let P be a point in R
2 and Ik the invariant curve of the uQRT map (1) with the

initial value P. Let C be the tropical elliptic curve given by (3) with (6). Then the uQRT map
φ : P �→ P̄ is equivalent to the addition formula of C̄ (see figure 6),

P + T̃ = P̄ + Õ = P̄ .

Corollary 1. The uQRT map φ : P �→ P̄ is linearized on J (C̄) in terms of (5),

η(P ) �→ η(P ) + η(T̃ ).

3.2. Fundamental periods

Now we consider the period of a point in the uQRT map. Let P0 ∈ R
2 and

P0
φ�→ P1

φ�→ · · · φ�→ Pn

φ�→ · · · .
The smallest n ∈ N satisfying Pn = P0 is called the fundamental period of P0 in φ.

By theorems 2 and 3, the single lattice distance dC(Õ, Pn) between Õ and Pn on C̄ is
inductively computed as follows:

dC(Õ, Pn) = dC(Õ, Pn−1 + T̃ )

= dC(Õ, Pn−1) + dC(Õ, T̃ )

= · · ·
= dC(Õ, P0) + n × dC(Õ, T̃ ).

This can be represented by the Abel–Jacobi map (5)

η(Pn) = η(P0) + n × η(T̃ ).

9
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Since η is bijective, the initial-value problem for the uQRT map is solved,

Pn = η−1(η(P0) + n × η(T̃ )).

If Pn = P0 we have

n × η(T̃ ) ≡ 0 (mod LZ).

Thus we have the following theorem.

Theorem 4. The fundamental period of P0 in φ is

L
gcd(η(T̃ ),L)

.

Example 4. Let the parameters α01, . . . , α22 be as in example 1. Let P0 = (4, 4). Then the
conserved quantity of φ is k = 14, and I14 is a pentagon with the following five vertices (see
figure 1):

V1 = Õ = (−9, 4), V2 = (−9,−5), V3 = (−5,−9),

V4 = T̃ = (4,−9), V5 = (4, 4).

Hence C satisfying C̄ � I14 is uniquely determined. The total lattice length is L = 48. By
using these data, we can compute the value of η at T̃ = (4,−9) as η(T̃ ) = 22. Thus the
fundamental period of P0 = (4, 4) in φ is

48

gcd(22, 48)
= 24.

If we choose the initial value as P0 = (−19, 0) we obtain k = 24 and the heptagonal
invariant curve I24 with the following seven vertices (see figure 1):

V1 = Õ = (−10, 14), V2 = (−19, 5), V3 = (−19,−5)

V4 = (−5,−19), V5 = (5,−19), V6 = T̃ = (14,−10), V7 = (14, 14).

Therefore, we have L = 100 and η(T̃ ) = 52. Thus the fundamental period of P0 = (−19, 0)

in φ is

100

gcd(52, 100)
= 25.

3.3. Solutions

Exact solutions to the initial-value problem for the uQRT map φ : (x(t), y(t)) �→
(x(t + 1), y(t + 1)) is given as follows:

x(t) = ρ1{H1(gt) − H1(gt − ω1)} + δ1,

y(t) = ρ2{H2(gt) − H2(gt − ω2)} + δ2,

where we put g := gcd(η(T̃ ),L) and

Hi(u) := �0

(
u + ξi

L

)
− �0

(
u + ξi − γi

L

)

for i = 1, 2, and �0(u) is the ultradiscrete elliptic theta function [9, 24],

�0(u) := −u2 +
∞

max
n=−∞[2nu − n2].

The parameters γi, δi, ρi, ωi, ξi for i = 1, 2 are uniquely determined by the initial value
(x(0), y(0)) via the data of C̄.

10
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Figure 7. Solutions to the uQRT map.

Example 5. We consider the same situation as example 4. Put (x(0), y(0)) = (4, 4), then
we have L = 48 and η(T̃ ) = 22. Since C̄ is symmetric under the reflection with respect to
y = x, we have

γ1 = γ2 = η(V5) − η(V4) − η(V2) + η(V1) + L
2

= 26,

ω1 = ω2 = L − η(V5) + η(V4) − η(V2) + η(V1)

2
= 13,

ρ1 = ρ2 = L
2ω1

(η(V4) − η(V2)) = 24,

δ1 = δ2 = −9 + ρ1
2γ1ω1

L2
= −47

24
.

The parameters ξ1 and ξ2, which determine the initial phase, are given as follows:

ξ1 = 2, ξ2 = 37.

On the other hand, for (x(0), y(0)) = (−19, 0), we obtain L = 100 and η(T̃ ) = 52, and
the parameters can also be computed by using the data of C̄:

γ1 = γ2 = 57, ω1 = ω2 = 33, ρ1 = ρ2 = 50

δ1 = δ2 = − 19
100 , ξ1 = 45, ξ2 = 21.

Figure 7 shows the solutions x(t) (solid lines) and y(t) (broken lines) to φ with the initial
values (x(0), y(0)) = (4, 4) (left) and (x(0), y(0)) = (−19, 0) (right), respectively.

4. Concluding remarks

We present a geometric description of the uQRT map in terms of the group law of a tropical
elliptic curve through the correspondence between the invariant curve of the uQRT map and
the complement of the tentacles of the tropical elliptic curve on which the curve has the group
structure. Using the Abel–Jacobi map, we linearize the uQRT map on the tropical Jacobian of
the corresponding tropical elliptic curve. We then solve the initial-value problem for the uQRT
map and give a formula concerning the fundamental period of a point in the map. An exact
solution to its initial-value problem is given by using the ultradiscrete elliptic theta function.

It is well known that the algebro-geometric approach is effective to examine classical
integrable systems [25]. Recent development of tropical geometric methods via tropical
spectral curves and their Jacobians [12, 13] and our result have shed light on the contribution
of tropical geometry to ultradiscrete integrable systems. Given our analysis, we believe this
contribution has merit in the study of other ultradiscrete systems. In the future, we intend to

11
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broaden tropical geometric methods to study various ultradiscrete systems, e.g. ultradiscrete
analogues of Sakai’s elliptic Painlevé equations [3] and the generalized QRT map [2] associated
with a higher-dimensional projective variety.
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